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The strong Chebyshev distribution and the Chebyshev orthogonal Laurent poly-
nomials are examined in detail. Explicit formulas are derived for the orthogonal
Laurent polynomials, uniform convergence of the associated continued fraction is
established, and the zeros of the Chebyshev L-polynomials are given. This provides
another well-developed example of a sequence of orthogonal L-polynomials.
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1. INTRODUCTION

In 1980, the paper entiled ``A Strong Stieltjes Moment Problem'' by
William B. Jones, W. J. Thron, and Haakon Waadeland appeared and
opened up the study of strong distributions and orthogonal Laurent poly-
nomials. Several examples of orthogonal Laurent polynomial are in the
literature including [4�6, 9�11, 20]. In [21], several strong distributions
were introduced and here we closely examine the strong Chebyshev dis-
tribution which first appeared there. Our reasons for developing this
example are two-fold. The first is that examples often provide insight that
suggests further lines of study. Second, the classical Chebyshev polynomials
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have proved very useful from a numerical point of view and we are optimistic
that there is a similar potential for the Chebyshev Laurent polynomials.

The strong Chebyshev distribution, �(x), defined in [21] by

�$(x)={
|x|

- b2&x2
- x2&a2

,

0,

x # B#[&b, &a] _ [a, b], 0<a<b<�,

x � B,
(1)

is a generalization of the classical Chebyshev distribution �0(x) where
�$0(x)=(1&x2)&1�2, x # [&1, 1], in the sense that as a � 0 and b � 1,
�$(x) � �$0(x). We will show that (1) is a strong symmetric distribution,
give closed form expressions for the Chebyshev Laurent polynomials, and
establish convergence (to an explicit function) of the continued fraction
associated with them.

Before discussing the problem in further detail, we review pertinent
terminology and notation, and recall certain results from the literature.
A strong distribution function is a bounded, nondecreasing function :(x)
with infinitely many points of increase in (a, b) such that its moments

+m=|
b

a
xm d:(x), m=0, \1, \2, ...

are all finite. Let [+n]�
&� be a bisequence of complex numbers, and let

&��a�b��. The strong moment problem asks whether it is possible
to find a strong distribution function :(x) such that

+m=|
a

:
xm d:(x), m=0, \1, \2, ... .

Two solutions :(x) and �(x) are said to be substantially equal if there exists
a constant C such that �(x)=:(x)+C at all common points of continuity.
A strong distribution :(x) is said to be normalized if :(&�)=0. If :(x)
and �(x) are normalized and substantially equal, then �(x)=:(x) at all
common points of continuity. Since any strong distribution can be nor-
malized by subtracting from it a suitable constant, we restrict our attention
to normalized strong distributions. If :(x) is a solution to a strong moment
problem, and all other solutions are substantially equal to :(x), then :(x)
is the substantially unique solution and the moment problem is said to be
determined. If :(x) is not substantially unique, the problem is said to be
indeterminate.

A Laurent polynomial, or L-polynomial, is a rational function of a non-
zero, real variable x with the form R(x)=�n

i=m rixi, where m, n # Z, m�n,
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and ri complex for i=m, ..., n. R(x) is said to be real if ri # R for i=m, ..., n.
The set of all Laurent polynomials is denoted by R, while Rm, n represents
the set of all Laurent polynomials of the form R(x)=�n

i=m rixi. Such a
vector space, Rm, n , is called an L-space. Two classes of L-polynomials that
arise in the study of orthogonal Laurent polynomials are

R2m=[R # R&m, m : the coefficient of xm is nonzero]

and

R2m+1=[R # R&(m+1), m : the coefficient of x&(m+1) is nonzero]

for all integers m�0. For every L-polynomial, R(x), there exists a unique
n such that R(x) # Rn .

Let [+n]�
&� be a bisequence of complex numbers and let L be a com-

plex-valued function defined on the vector space R by

L[R(x)]= :
n

i=m

ri +i ,

where R(x)=�n
i=m rixi . The linear functional L is called the strong

moment functional determined by the bisequence of moments [ +n]�
&�. L

is said to be symmetric if +2n+1=0 for all n # Z. A sequence of L-polyno-
mials [Rn(x)]�

n=0 is an orthogonal Laurent polynomial sequence (OLPS)
with respect to L if Rk(x) # Rk for each k�0 and

L[Rm(x) Rn(x)]=Kn $m, n

for all m, n�0, where Kn{0 for all n�0 and $m, n is the Kronecker delta
function.

A strong moment functional L is said to be positive-definite if
L[R(x)]>0 for all R(x) # R such that R(x) is not identically zero
and R(x)�0 for all x # R"[0]. L is positive-definite on E/R"[0] if
L[R(x)]>0 for all R(x) # R such that R(x) � 0 on E and R(x)�0 on E.
A positive-definite strong moment functional has real moments [ +n]�

&�

[2, 16, 19] and there exists a real OLPS [Rn(x)]�
n=0 corresponding to L;

see [2, 12, 13, 15, 18]. Furthermore, there exists a strong distribution
function �(x) such that

+m=L[xm]=|
�

&�
xm d�(x), m=0, \1, \2, ... .

Such a strong distribution function is called a representative of L. If :(x)
is a representative and �(x) is substantially equal to :(x), then �(x) is also
a representative of L. If all representatives of L are substantially equal,
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then L is said to be determinate. Note that it may be possible for L to be
represented by substantially unequal distribution functions. One such
example is the strong moment problem associated with the log-normal dis-
tribution [1, 4, 5, 6, 20]. Two substantially unequal distributions are given
explicitly in [4], a third representative is given in [20], and two discrete
natural representatives are identified in [1]. Thus the log-normal distribu-
tion is an example of a distribution corresponding to an indeterminate
strong moment problem. In contrast, the strong Chebyshev distribution
corresponds to a determined strong moment problem [8].

In Section 2, we show that the strong Chebyshev distribution repre-
sents a symmetric strong moment functional L-positive-definite on B=
[&b, &a] _ [a, b], 0<a<b<�. Since L is positive-definite, there exists
an associated (monic) OLPS, [Rn(x)]�

n=0. In Section 3, we derive the
Chebyshev L-polynomials from the classical Chebyshev polynomials using
a change of variable, show that they are orthogonal with respect to 9 $(x),
and obtain recurrence relations and closed form expressions for them.

The continued fraction K(:n(z)�;n(z)) formed from the coefficients of the
three-term recurrence relation associated with the OLPS has the form

K \:n(z)
;n(z)+=

d1

z&a1 �z
&

d2

z&a2 �z
&

d
z&a3 �z

&
d4

z&a4�z
& } } } ,

where an and dn are constant for n�3, and hence the tail of the continued
fraction is periodic. We use convergence results from [14, 18] to establish
uniform convergence on compact subsets of C"B to a function F(z).
Further, an analysis using the relatively simple form of K(:n(z)�;n(z))
allows us to determine F(z) explicitly. Using a result from [22], we then
show that a suitably chosen branch of F(z) is equivalent to the Stieltjes
transform of the strong Chebyshev distribution. We concude the paper
by deriving explicit expressions for the zeros of the Chebyshev Laurent
polynomials.

2. THE STRONG CHEBYSHEV DISTRIBUTION

A. Sri Ranga and J. H. McCabe [21] defined the strong Chebyshev dis-
tribution by

�$(x)={
|x|

- (b2&x2)(x2&a2)
,

0,

x # B :=[&b, &a] _ [a, b], 0<a<b<�,

x � B.
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The strong Chebyshev distribution can be obtained from the classical
Chebyshev distribution �0 (x) by a quadratic transformation along the
lines indicated in [7]. In particular, if

T(x) :=cx2&d, where c=
2

b2&a2 and d=
b2+a2

b2&a2 ,

then �$(x)= 1
2 |T $(x)| �$0 (T(x)). From the two distributions, it is clear that

the transformation must be quadratic. The exact form of the quadratic
transformation follows from the equation �$(x)= 1

2 |T $(x)| �$0 (T(x)).
We claim that �(x) is indeed a strong distribution, implying that it is a

bounded, nondecreasing function with infinitely many points of increase
such that its moments are all finite. The fact that �(x) is nondecreasing
follows immediately from the observation that �$(x)�0 on R. Also, �(x)
has infinitely many points of increase since it is strictly increasing on B.
The fact that �(x) is bounded and has finite moments follows from
knowledge about +0 .

We claim that

+0=|
B

d�(x)=|
1

&1
d�0 (x)=?.

Now

+0=|
B

d�(x)=|
B

1
2 |T $(x)| �$0 (T(x)) dx

=|
&a

&b
&1

2T $(x) �$0 (T(x)) dx+|
b

a

1
2T $(x) �$0 (T(x)) dx.

By substituting u=T(x) we obtain

|
B

d�(x)=|
&1

1
&1

2 �$0 (u) du+|
1

&1

1
2�$0 (u) du

=|
1

&1
�$0 (u) du=?.

From this result it follows that all the moment +n are finite since

| +n|�|
B

|x|n+1 dx

- (b2&x2)(x2&a2)

�{bn+0=bn?<�
an+0=an?<�

if n>0
if n<0.
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To show that �(x) is bounded, note that for any real x,

�(x)=|
x

&�
d�(t),

assuming �(x) has been normalized so that �(&�)=0. In particular,
�(&b)=0, while for x # R arbitrary,

�(x)=|
x

&b
d�(t)�|

b

&b
d�(t)=+0=?

and hence �(x) is bounded.
�(x) is symmetric since the odd moments vanish as is evident from

+2n+1=|
&a

&b

x2n+1 |x| dx

- (b2&x2)(x2&a2)
+|

b

a

x2n+1 |x| dx

- (b2&x2)(x2&a2)

=0.

Thus, �(x) is a symmetric strong distribution.

3. CHEBYSHEV LAURENT POLYNOMIALS

In this section, we will introduce a change of variable that will allow us
to obtain several results about Chebyshev L-polynomials from results
about classical Chebyshev polynomials. Using the transformation we will
obtain a sequence of L-polynomials from the Chebyshev polynomials,
show that the sequence of L-polynomials is orthogonal with respect to
�(x), obtain the three-term recurrence formulae, and find closed form
expressions for the Chebyshev L-polynomials.

The change of variable which will be used is y=(1�(b&a))(x&ab�x),
which results from determining a y such that �$0 ( y)=(b&a) �$(x). Let
[Tn (x)]�

0 be the classical monic Chebyshev polynomials and define a
sequence of L-polynomials [Rn (x)]�

0 by

R0 (x)=1

R2n (x)=(b&a)n 2&n+1Tn ( y), n�1 (2)

R2n+1 (x)=
(&1)n R2n (x)

(ab)nx
, n�0.
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3.1. Orthogonality with respect to �$(x)

Here we will show that [Rn (x)]�
0 is orthogonal with respect to �(x).

Recall that for the classical Chebyshev polynomials, [Tn ( y)]�
0 , the

orthogonality relation is given by

1
? |

1

&1
Tn ( y) Tn ( y)

dy

- 1&#2
={

1
1
2

$mn

for n=m=0

otherwise.

We will use the change of variable y=(1�(b&a))(x&ab�x) to show that
[rn (x)]�

0 is orthogonal with respect to �(x), where r2n (x)=Tn ( y) and
r2n+1 (x)=(1�x) r2n (x) for n�0.

First note that the change of variable y=(1�(b&a))(x&ab�x) can also
be written as

x=
(b&a)y\- (b&a)2 y2+4ab

2
.

Thus, under this transformation, the interval [&1, 1] for y becomes the
union of the two intervals [&b, &a] and [a, b] for x. Also,

dy=
1

b&a \1+
ab
x2+ dx and

1

- 1&#2
=

(b&a) |x|

- (b2&x2)(x2&a2)
.

Therefore,

1
? |

1

&1
Tn ( y) Tm ( y)

dy

- 1&y2

=
1
? |

B
r2n (x) r2m (x) \1+

ab
x2+ |x| dx

- (b2&x2)(x2&a2)

={
1
1
2

$mn

for n=m=0

otherwise.

For n=m, it is clear that

|
B

r2
2n(x) d�(x)>0 and |

B
r2

2n+1(x) d�(x)>0.
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Assume n{m. Then,

1
? |

B
r2n (x) r2m (x) \1+

ab
x2+ d�(x)=0

yielding

|
B

r2n (x) r2m (x) d�(x)+ab |
B

r2n+1 (x) r2m+1(x) d�(x)=0.

We claim that

|
B

r2n (x) r2m (x) d�(x)=|
B

r2n+1 (x) r2m+1 (x) d�(x)=0.

Note that by symmetry

|
B

r2n (x) r2m (x) d�(x)=2 |
b

a
r2n (x) r2m (x) d�(x)

and

|
B

r2n+1 (x) r2m+1 (x) d�(x)=2 |
b

a
r2n+1 (x) r2m+1 (x) d�(x).

Therefore,

|
B

r2n (x) r2m (x) d�(x)+ab |
b

a

1
x2 r2n (x) r2n (x) d�(x)=0.

Now observe that

a
b |

b

a
r2n (x) r2m (x) d�(x)�ab |

b

a

1
x2 r2n (x) r2m (x) d�(x)

�
b
a |

b

a
r2n (x) r2m (x) d�(x).

Hence

\1+
a
b+ |

b

a
r2n (x) r2m (x) d�(x)�0�\1+

b
a+ |

b

a
r2n (x) r2m (x) d�(x)
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from which it follows that

|
b

a
r2n (x) r2m (x) d�(x)=0

and hence

|
B

r2n (x) r2m (x) d�(x)=0

which in turn implies that �B r2n+1 (x) r2m+1 (x) d�(x)=0. Since R2n (x)=
(b&a)n 2&n+1r2n (x) and R2n+1 (x)=((&1)n (b&a)n 2&n+1�(ab)n) r2n+1 (x),
the L-polynomial sequence [Rn (x)]�

0 is orthogonal with respect to �(x).

3.2. Three-Term Recurrence Relations and Closed Form Expressions

The three-term recurrence relations for the [Rn (x)]�
0 will be derived

from the three-term recurrence relations for [Tn (x)]�
0 . Since [Tn (x)]�

0

are the Chebyshev polynomials of the first kind,

T0 (x)=1, T1 (x)=1

Tn+1 (x)=2xTn (x)&Tn&1 (x), n�1.

Thus,

R0 (x)=1, R2 (x)=x&
ab
x

(3)

and

(b&a)n+1 2&nTn+1 ( y)=(b&a) y(b&a)n 2&n+1Tn ( y)

&(b&a)2 2&2(b&a)n&1 2&n+2Tn+1 ( y)

yielding

R2n+2(x)=\x&
ab
x + R2n (x)&

(b&a)2

4
R2n&2 (x) for n�1. (4)

Relation (2) will now be used to derive closed form expressions for
R2n(x). Starting with

Tn ( y)=
n
2

:
[n�2]

j=0

(&1) j (n&j&1)!
j ! (n&2j ) !

(2y)n&2j and y=
1

b&a
(x&ab�x),
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we have

R2n (x)=(b&a)n 2&n+1 n
2

:
[n�2]

j=0

(&1) j (n&j&1)!
j ! (n&2j) ! \2(x&ab�x)

b&a +
n&2j

=n :
[n�2]

j=0

(&1) j (n&j&1)!
j ! (n&2j ) ! \b&a

2 +
2j

\x&
ab
x +

n&2j

=n(ab)n :
[n�2]

j=0

(&1)n+j (n&j&1)!
j !

_\b&a
2ab +

2j

:
n&2j

k=0

(&1)k x2k+2j&n

k ! (n&2j&k) ! (ab)k

=n(ab)n :
[n�2]

j=0

(&1)n&j (n&j&1)!
j ! \b&a

2ab +
2j

__ x2j&n

(n&2j) !
&

x2+2j&n

(n&2j&1)! (ab)
+

x4+2j&n

2! (n&2j&2)! (ab)2

&
x6+2j&n

3! (n&2j&3)! (ab)3 + } } } +
(&1)n&1 xn&2j&2

(n&2j&1)! (ab)n&2j&1

+
(&1)n xn&2j

(n&2j) ! (ab)n&2j& .

Therefore, R2n (x)=�n
k=&n r2n, kxk where

r2n, &n+2j

=
(&1)n&j n(ab)n&2j (b&a)2j

22j :
j

k=0

(n&j&1+k) ! 22k(ab)k

k ! ( j&k) ! (n&2j+k) ! (b&a)2k

for j=0, 1, ..., [n�2] and

r2n, n&2j=(&1) j n
(b&a)2j

22j :
j

k=0

(n&j&1+k ) ! (ab)k 22k

k ! ( j&k) ! (n&2j+k) ! (b&a)2k

for j=0, 1, ..., [n�2].
Notice that r2n, &n+2j=(&1)n (ab)n&2j r2n, n&2j for j=0, 1, ..., [n�2].
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4. THE ASSOCIATED CONTINUED FRACTION

This section is devoted to the continued fraction associated with the
three-term recurrence relations given in (3) and (4). We begin by reviewing
some basic terminology related to a continued fraction of the form

b0(z)+K �
n=1 \an(z)

bn(z)+ . (5)

The functions an(z) and bn(z) are elements of the continued fraction and
fn(z)=b0(z)+K n

j=1 (aj (z)�bj (z)) is the n th approximant of (5). The con-
tinued fractions K �

n=p(an (z)�bn(z)), p=1, 2, ..., are the tails of (5).
The continued fraction (5) is said to converge to a function f (z) for z # D

if ( fn(z)) converges (pointwise) to f (z) for z # D. It is said to converge
uniformly to f (z) on D if ( fn(z)) converges uniformly to f on D.

A continued fraction K(an�bn) is said to be periodic with period k if its
elements satisfy the conditions ank+p=ap , bnk+p=bp , p=1, 2, ..., k,
n=0, 1, 2, ... . A continued fraction K(an �bn) is said to be limit periodic with
period k, or limit k-periodic, if its elements satisfy limn � � ank+p=ap*,
limn � � bnk+p=bp* , p=1, 2, ..., k, when these limits all exist in C. In this
case, the elements are said to be limit k-periodic.

The continued fraction arising from the three-term recurrence relations
given in Eqs. (3) and (4) is

?
z

z2&#
1

&

1
2

*2 z2

(z2&#)2

1
+ K \&_1

2
*

z
z2&#&

2

1 + . (6)

We will show that this limit 1-periodic continued fraction converges
pointwise on C"B, B=[&b, &a] _ [a, b], to a function F(z). We then
determine an explicit expression for the limit function F(z), and show that
a suitably chosen branch of F(z) is equivalent to the Stieltjes transform of
the strong Chebyshev distribution. Finally, we show that the continued
fraction converges uniformly on compact subsets of C"B. The uniform con-
vergence is shown using results from [18].

4.1. The Limit Function and Its Analyticity

In this section, we first determine the pointwise convergence region for
the continued fraction (6). This is done with the help of Theorem 3.2 form
[14]. We then examine the limit function F(z), and select a branch of F(z)
which is analytic on C"B.
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Theorem 4.1. Let #=ab and *=b&a. Then the continued fraction

?
z

z2&#
1

&

1
2

*2 z2

(z2&#)2

1
+ K \&_1

2
*

z
z2&#&

2

1 + (7)

converges pointwise on C"B and diverges on B.

Proof. Let w=z2, w=rei%. Then, as mentioned above, by Theorem 3.2
in [14], the continued fraction (7) converges for all nonzero complex
&1

4*2w�(w&#)2 unless w�(w&#)2 is real and w�(w&#)2>1�*2, or equiv-
alently, when

r
(r2+#2) cos %&2#r+i(r2&#2) sin %

>
1
*2 . (8)

In order for expression (8) to be real, it is necessary to have
(r2&#2) sin %=0, implying sin %=0 or r=#. When %=0, (8) reduces to
(r&a2)(r&b2)<0, which holds if and only if a2<r<b2. Both %=? and
r=# lead to contradictions. Thus w�(w&#)2>1�*2 if and only if a2<r<b2

and %=0 and hence the continued fraction diverges if and only
z # B=[&b, &a] _ [a, b]. K

Next, we focus on the limit function F(z). We will determine an explicit
expression for F(z), find a branch of F(z) that is analytic on C"B, and
show that this branch is the Stieltjes transform of the strong Chebyshev
distribution.

Theorem 4.2. Let #=ab and *=b&a. Then the continued fraction

?
z

z2&#
1

&

1
2

*2 z2

(z2&#)2

1
+K \&_1

2
*

z
z2&#&

2

1 + (9)

converges on C"B to F(z), where

F(z)=
x

- z2&b2
- z2&a2

. (10)

Proof. Let z # C"B, so that by Theorem 4.1, the continued fraction (9)
converges to F(z). Then

F(z)=
?z

z2&#
&

(1�2) *2z2

z2&#
&f (z) (11)
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where

f (z)=
(1�4) *2z2

z2&#&f (z)
.

Recalling that #=ab and *=b&a, we solve for f (z) obtaining

f (z)=
(z2&ab)\- (z2&b2)(z2&a2)

2
. (12)

Using this expression for f (z) in Eq. (11), and after straightforward
simpflications, F(z) becomes

F(z)=�
?z

- z2&b2
- z2&a2

. (13)

Now we determine whether to choose the positive or negative sign in
Eq. (13) for F(z). Let z=i # C"B. Then the continued fraction (9) con-
verges. Using Theorem 3.2 from [14], the tail K([ 1

2*�(1+#)]2�1) of F (i )
converges to &1

2+ 1
2 - (*�(1+#))2+1. With this expression for the tail of

F (i ), (9) reduces to

F (i )=
&?i

(1+#)(1+P)
, (14)

where P=[*�(1+#)]2 [1+- (*�(1+#))2+1]&1>0. Also, from (13),

F (i )=\
?i

- 1+b2
- 1+a2

. (15)

Since expressions (14) and (15) for F (i ) must be equal, we choose the
positive sign in (13) for F (z), which completes the proof. K

Using the result (10) of the above theorem, we will show that F (z) is
equivalent to the Stieltjes transform of the strong Chebyshev distribution.
The Stieltjes transfrom of �(x) is

S(�, z)=
1
? |

�

&�

d�(x)
z&x

, z # C"R.

The next theorem is an adaptation of a lemma appearing in [22]. We give
this result here, and then use it in proving that F (z) is equal to the Stieltjes
transform of the strong Chebyshev distribution.
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Theorem 4.3. Let �(x) be the strong Chebyshev distribution defined in
(1), with support B=[&b, &a] _ [a, b], 0<a<b<�. The Stieltjes trans-
form of �(x) is

S(�, z)=
?z

- z2&b2
- z2&a2

, z # C"B,

provided the roots - z2&b2 and - z2&a2 are chosen such that z2�
- z2&b2

- z2&a2 is analytic on C"B and tends to 1 as z tends to infinity.

Theorem 4.4. Let F (z) denote the limit function (10) of the continued
fraction (9). Then a branch of F (z) analytic on C"B may be chosen such that

F (z)=
1
? |

�

&�

d�(x)
z&x

, z # C"B. (16)

Thus the continued fraction (9) converges to the Stieltjes transform of the
strong Chebyshev distribution.

Proof. A branch of F (z) analytic on C"B can easily be derived as
follows. Let r(z)=- z2&b2

- z2&a2. A branch of r(z) analytic on C"B is
given by

r(z)=- r1 r2 r3r4 ei(%1+%2+%3+%4)�2

with r1=|z+b|, r2=|z+a|, r3=|z&a|, r4=|z&b|, r1+r2>b&a, r3+r4>
b&a, %1=arg(z+b), %2=arg(z+a), %3=arg(z&a), %4=arg(z&b), 0�
%k<2?, k=1, 2, 3, 4 [22]. Furthermore, rewriting zF (z) as

zF (z)=
?

- 1&b2�z2
- 1&a2�z2

,

it follows immediately that limz � � zF (z)=?. Therefore, by Theorem 4.3,
F (z) is equal to the Stieltjes transform of the strong Chebyshev distribu-
tion. K

4.2. Uniform Convergence

From the results of the previous section, the continued fraction (6) con-
verges on C"B to the limit function F (z), where F (z) is given in (10). Here,
we show that the continued fraction converges uniformly to F (z) on com-
pact subsets of C"B. This is done by applying results given in [18].
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Recall that our continued fraction (6) is limit 1-periodic with

a1*(z)=&
1
4

*2 z2

(z2&#)2 (17)

and b1*=1, where #=ab and *=b&a. The convergence of (6) is deter-
mined by the linear fractional transformation T (w)=a1*(z)�(1+w) and by
the fixed points u(z) and v(z) of T (w). These fixed points, u(z) and v(z), are
&1

2\ 1
2 - (z2&b2)(z2&a2)�(z2&ab). T (w) is said to be loxodromic since

a1*(z){0 when z{0 and b1*=1{0 when a1*(z)=0.
The following theorem, adapted to our setting, appears as Theorem 31,

Chap. 3 of [18].

Theorem 4.5. Let K(an(z)�bn(z)) be the limit 1-periodic continued fraction

?
z

z2&#
1

&

1
2

*2 z2

(z2&#)2

1
+K \&_1

2
*

z
z2&#&

2

1 + . (18)

Let a1*(z) and T (w) be as given above, and let u(z), v(z) be the fixed points
of T (w). If D/C is an open set where u(z) and v(z) are both finite, then
K(an(z)�bn(z)) converges uniformly on compact subsets C of D to a function
F (z), provided F (z) is finite on C.

We use the result of this theorem in the proof of Theorem 4.6 below.

Theorem 4.6. Let #=ab and *=b&a. Then the continued fraction

?
z

z2&#
1

&

1
2

*2 z2

(z2&#)2

1
+K \&_1

2
*

z
z2&#&

2

1 + (19)

converges uniformly on compact subsets of C"B.

Proof. We see that u(z) and v(z) are both finite on D=C"B. Further,
by (10), the limit function F (z) is finite-valued on C"B. Hence, by
Theorem 4.5, the continued fraction (19) converges uniformly on compact
subsets of C"B. K
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4.3. Zeros of the Orthogonal L-Polynomials

We conclude the paper by finding explicit expressions for the zeros of
R2n(x). First recall that the zeros of the classical Chebyshev polynomials,
Tn(x), are given by

xn, k=cos \2k&1
n

?+ , k=1, 2, ..., n. (20)

These zeros will be used to find explicit expressions for the zeros of
R2n(x). From (2) we see that if [z2n, k : k=\1, ..., \n] are the zeros of
R2n(x) then

Tn \zn, k&ab�zn, k

b&a +=0, k=\1, \2, ..., \n.

Hence for each k # [\1, \2, ..., \n] there exists an mk , 1�mk�n, such
that

z2n, k=
1
2

(b&a) cos \2mk&1
2n

?+\
1
2 �(b&a)2 cos2 \2mk&1

2n
?++4ab.

An alternate way of obtaining expressions for the zeros of R2n(x) is to
use the fact that R2n(x) is the n th denominator of the continued fraction
(19). It can be shown that the fixed points u(x) and v(x) of the linear frac-
tional transformation

s(w)=
&(1�4) *2

x&ab�x+w

satisfy

R2n(x)=[&u(x)]n+[&v(x)]n (21)

for n=3, 4, ... . Setting R2n(x)=0 and taking the n th root of both sides of
(21), we find the zeros of R2n(x) to be

\
1
2

(b&a) cos \2k&1
2n

?+\
1
2 �(b&a)2 cos2 \2k&1

2n
?++4ab

for k=1, 2, ..., n. After simplifying and removing the redundancy, it was
shown in [3] that the zeros of R2n(x) are given by [\t2n, k]n

k=1 where

t2n, k=&
1
2

(b&a) cos \2k&1
2n

?++
1
2 �(b&a)2 cos2 \2k&1

2n
?++4ab .
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